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Abstract--A numerical scheme based on Galerkin’s finite element method was used to solve the three- 
dimensional governing equations for steady laminar simultaneously developing flow and heat transfer in a 
semi-circular duct. Two different boundary conditions, constant wall heat flux both axially and peripherally 
and consl:ant wall temperature, were considered. The study was conducted for a purely viscous non- 
Newtonian fluid with different power law indices and Prandtl numbers. The effects of temperature depen- 

dent viscosity and viscous dissipation were examined and discussed. 

INTRODUCTION 

Internal fins and twisted-strips can be used as effective 
techniques for enhancing heat transfer in circular 
tubes. Such techniques find application in many com- 
pact heat exchangers and have motivated many 
research investigations. In the limiting case of a 
twisted strip, the strip is straight and thin and the tube 
is thus divided into two semi-circular ducts. The semi- 
circular duct is also the limiting case for internally 
finned tubes with full tapered fins. The presence of fin 
or strip changes the flow pattern and hence the pres- 
sure drop and heat transfer. It is therefore important 
to have a detailled knowledge of the fluid flow and 
heat transfer coefficients for semi-circular ducts. 

Laminar flow heat transfer in circular and non- 
circular cross sectional ducts has been surveyed exten- 
sively by Shah and London [l] and Shah and Bhatti 
[2]. The hydrodynamically and thermally fully 
developed flow in semi-circular tubes with different 
apex angles (varying from 1 to 60”) was first analyzed 
by Eckert et al. [3] for constant heat flux boundary 
conditions. Sparrow and Haji-Sheikh [4] extended this 
work and obtained results for 0” < 2~ < 180”. Hu [5] 
and Hu and Chang [6] solved the governing equations 
for steady fully developed laminar flow and heat trans- 
fer for internally finned tubes subjected to the H2 
(constant heat flux both axially and peripherally) 
boundary conditions. When the number of fins is one, 
the duct is a semi-circular channel. Soliman et al. [7] 
numerically analyzed the laminar flow in the entrance 
region of circular sector ducts with apex angles from 
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11.25-90”. The Fourier transform technique was used 
by Lei and Trupp [8] to obtain results for fully 
developed steady laminar Newtonian flow, and [9] 
analyzed the fully developed flow and heat transfer 
for the Hl (constant wall heat flux axially and con- 
stant wall temperature peripherally) boundary con- 
dition and [lo] for the H2 thermal boundary condition 
in circular sector ducts. Trupp and Lau [ 1 l] employed 
the finite difference technique for laminar heat transfer 
in circular sector ducts with isothermal walls for apex 
angles from 8 to 180”. Also Ben-Ali et al. [12] applied 
this numerical method to predict the heat and fluid 
flow behavior for different boundary conditions in 
annular sector and circular sector channels with apex 
angles from 5 to 350”. 

The hydrodynamically developed but thermally 
developing case was investigated numerically using 
the finite difference method by Hong and Bergles [ 131 
for Hl , Manglik and Bergles [ 141 for T (constant wall 
temperature axially and peripherally) and Lei and 
Trupp [15] for Hl and H2 boundary conditions. The 
work of Lei and Trupp [15] covers results for apex 
angle from 20 to 360”. Prakash and Liu [16] reported 
local Nusselt numbers for simultaneously developing 
flow and heat transfer of circular sector ducts with 
apex angles of 45, 22.5 and 5”. They employed the 
control volume finite difference method to solve the 
parabolized governing equations. 

Hsia and Chung [ 171 employed the finite difference 
approach to solve the hydrodynamically fully 
developed and thermally developing case for a power 
law fluid flowing through annular sector ducts under 
the Hl boundary condition, including viscous dis- 
sipation effects. Dasmahapatra and Hsia [18] exper- 
imentally studied the fluid flow and heat transfer of 
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NOMENCLATURE 

cross sectional area 
dimensionless temperature-viscosity 
coefficient defined by equations (11) and 

(12) 
temperature-viscosity coefficient 
defined by equation (2) 
Brinkman number [ = k&“/ 
K(T,-T,.,)Dg-’ for Tand 
k&+‘/Dzq for H2 boundary 
conditions] 
defined by equation (8) 
heat capacity 
defined by equation (8) 
hydraulic diameter [ = 1.222 R] 
defined by equation (8) 
friction factor [ = (zw/fpu:)( 1/4X)] 
apparent friction factor 
temperature dependence function of 
the consistency index defined by 
equation (2) 
dimensionless temperature 
dependence function of the consistency 
index defined by equations (11) and 

(12) 
defined by equation (8) 
gravity acceleration 
defined by equation (8) 
defined by equation (8) 
thermal conductivity 
consistency index at reference 
temperature 
peripheral distance 
dimensionless peripheral distance of 
the channel [ = I/D,] 
power law index 
mean Nusselt number 

I( 1 ix) sib NK dXl 
local Nusselt number 
[(33/&S),/O,,, -(& for H2 and 
(~Q/&S),.,/t?,, for T boundary 
conditions] 
pressure 
dimensionless pressure [(p - pgz)/pu,‘] 
axial pressure drop [ = pe -p] 
Peclet number [ = pC,u,D,/K] 
Prandtl number 

[h;a~fl~x(UM- ’ 14 

dimensionless heat flux [ = qJq,,,] 
radial coordinate 
radius of the channel 
dimensionless radial coordinate 

]= r/&l 

Re 
S 
T 
u 
u 
u max 
V 

V 

W 

W 

X 

x 

X+ 

X* 

Y 
Y 

z 
Z 

Reynolds number [ = pt.&“D[/k,] 
dimensionless normal distance 
temperature 
axial velocity 
dimensionless axial velocity [ = u/ue] 
dimensionless maximum velocity 
velocity in y direction 
dimensionless velocity in y direction 
I= 4&l 
velocity in z direction 
dimensionless velocity in z direction 

1 = W/&l 
axial distance 
dimensionless axial distance [ = x/D,,] 
dimensionless axial coordinate 
[ = x/D,Re] 
dimensionless axial coordinate 
[ = x/D, Pe] 
transverse distance 
dimensionless transverse distance 

[ = .v/D,l 
transverse coordinate 
dimensionless transverse distance 

[ = z/Dd 

Greek symbols 

A 

e 

e b,x 

circumferential angle from the bottom 
plate and from the origin of the channel 
rate of deformation tensor in Cartesian 
coordinates 
dimensionless temperature 
[ = (T- T,)/(T, - T,) for T and 
= (T- T,)/(qD,/K) for H2 boundary 
conditions] 
dimensionless bulk temperature 
evaluated at x axial position 
defined by equation (8) 
density 
shear stress tensor 
wall shear stress 
apex angle. 

Subscripts 
b evaluated at bulk condition 

;d 
evaluated at inlet condition 
fully developed condition 

H2, x evaluated at local x position for H2 
boundary condition 

m mean value 
T, x evaluated at local x position for T 

boundary condition 
X evaluated at local x position 
W evaluated at wall condition. 

1 
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non-Newtonian fuids in a circular duct with the 
twisted tape inserted with the T boundary condition. 

Lawal and Mujumdar [ 191 and Etemad et al. [20, 
211 showed that assumption of constant viscosity exhi- 
bits substantial (deviation from variable viscosity 
results. Also the effect of viscous dissipation can be 
very significant (depending on the Brinkman number). 
Generally the entrance region is also very important 
and a major fraction of pressure drop and total heat 
transfer occur in this region of channels. In spite of 
the importance of non-Newtonian fluids in industrial 
applications, there does not appear to be a sim- 
ultaneously developing fluid flow and heat transfer 
solution for non-Newtonian fluids flowing through 
semi-circular duc1.s. 

This numerical study is concerned with the sim- 
ultaneous development of flow and heat transfer for 
power law fluids. It covers the effects of power law 
indices, variable viscosity, viscous dissipation and 
Prandtl number for two different boundary conditions 
(Tand H2). 

Problem statement 
The problem to be considered is depicted sche- 

matically in Fig. 1. The origin of the coordinate system 
is fixed at the middle of the bottom plate of the semi- 
circular duct. Th’: symmetry of the cross section per- 
mits the restriction of the solution to only half the 
channel. 

Two types of thermal boundary conditions (T and 
H2) were examined. All fluid properties are held con- 
stant except viscosity. The Ostwald-de waele power 
law is used to model shear stress in the following form : 

z = k,f(T)lA:Al”-“*A (1) 
where k0 is the consistency index at reference tem- 
perature (T,,) while f(T) specifies the temperature 
dependence of the consistency index as follows : 

f(T) = eB’(T-To). (2) 
The dimensionless governing equations in Car- 

Fig. 1. Channel geometry and grid points. 

tesian coordinates can be written as : 

continuity 

x-momentum 

(3) 

av av av 
“ax+vay+W~ 

= -Fy+$ ( Fy+g+g > (5) 

z-momentum 
aw aw aw ua,+var+wz 

= > (6) 

energy 

where 

n 
H=2 2 

(n-1)1* aw 

0 az F(Q). (8) 
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The dimensionless 
follows : 

parameters are defined as 

Y=$ +$ 
h h 

n--l 

p&II_!Y Re=pu, 2--nD;: 
PM,’ ko 

and Pr = 
K 

(9) 

x x+ _y* = - = - 
RePr Pr’ (10) 

Dimensionless variables for different boundary con- 
ditions are defined as follows : 

for the constant wall temperature (T) 

Q= T-T, 
T,--T, Br= 

k&+’ 
D;:-‘(T,-T,)K 

ae C-1 as v/m 
F(O) = ers(Te-Tw’ = eBe and Nu, = B 

b,.V 

(11) 
for constant wall heat flux (both axially and per- 

ipherally) (H2) 

n 

T- T, Ozp 
qD, 

Br = 
4 

K 

de 0 as 
F(O) = ewoqcDh/fl = eBR andNu,x = 8 

w,m 
_i 

b.x 

(12) 
where the peripheral mean wall temperature &, at 
an arbitrary cross section is defined as 

0 
1 

w.m = 7 
s 

0, dL 
P T 

(13) 

and 

r OUdA 

t&X = J. s UdA 
(14) 

The heat flux is nondimensionalized in terms of heat 
flux on one wall (QX = ql/qw). 

The hydrodynamic entrance length is defined here 
as the length of the duct which is required to achieve 
maximum velocity within 99% of the corresponding 
fully developed value. The Fanning friction factor, L 

is defined as the ratio of the local wall shear stress to 
the fluid kinetic energy per unit volume. For a fully 
developed flow 

f=&&& (15) 
e 

In the entrance region f is often called the apparent 
friction factor,f,,,, and is based on the total pressure 
drop over the axial length from X = 0 to X = X. 

The mean Nusselt number over length X measured 
from the inlet is given by 

Nu, = ; 
s 

x Nu, dX. (16) 
cl 

The fluid enters the duct with uniform velocity and 
temperature profiles. Thus : 

i 

U=l v=o w=o 

X = 0 0 = 1 for T boundary condition (17) 
0 = 0 for H2 boundary condition. 

The no slip condition is applied at the channel walls. 
The dimensionless temperature at the walls for the 
T boundary condition is zero and for H2 boundary 
condition the dimensionless heat flux at both walls is 
unity. The velocity gradient across the symmetry plane 
is zero except for they direction, for which the velocity 
at the symmetry plane is zero. Also the temperature 
gradient at the symmetry plane is zero. A fully 
developed condition could be prescribed at the outlet 
boundary due to the long length of the plates (120 
times the hydraulic diameter) and also the high Peclet 
number (50~5000) and relatively high Reynolds 
number values (500). 

Equations (3)-(7), which are an elliptic system of 
partial differential equations with associated bound- 
ary conditions, were solved using FIDAP (a fluid 
dynamic and heat transfer analysis package, based on 
Galerkin finite element method). The Galerkin finite 
element method is well documented in the literature 
e.g. Zienkiewicz [22], Pittman [23] and Engleman [24]. 

RESULTS AND DISCUSSION 

The flow domain was discretized and the governing 
equations were converted into algebraic equations 
using 61 x 13 x 17 grids of eight-node quadratic 
bricks. The number of meshes was based on the 
requirement of mesh independence of the solution. 
Penalty approach was chosen for the pressure with 
the penalty parameter set at lo-’ to satisfy continuity 
without solving an additional partial differential equa- 
tion. Due to the higher velocity and temperature 
gradients in the entrance region and in the vicinity of 
the walls, finer mesh distributions were used in these 
regions. The solution of the set of algebraic equations 
available from the discretization of governing equa- 
tions is the most time consuming stage of the solution, 
so the solution algorithm is very important. Due to 
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Fig. 2. Comparison of the fully developed velocity profile at different circumferential locations. 

the high radius of convergence of the fixed iteration 
method and also the high rate of convergence for 
quasi-Newton-Raphson, the combination strategy 
used to solve the algebraic equations starts with the 
fixed iteration method with a high relaxation factor 
and then switches to the quasi-Newton-Raphson 
approach with a smaller relaxation factor. The com- 
bination strategy results in a significant saving in com- 
putational time. The Petrov-Galerkin formulation 
(streamline upwinding) was used to improve numeri- 
cal instability. The convergence criterion was set at 
10m4 relative difftrence between successive solution 
vectors and also 1 he relative residual. 

The numerical procedure was tested by comparing 
predictions with available analytical and numerical 
solutions. Figure 2 shows the excellent agreement 
between the fully developed axial velocity profile at 
different circumferential locations obtained from the 
present investigation and the results of Manglik and 
Bergles [14]. 

The fully developed friction factor from Hu [5], Lei 
and Trupp [8], Ben-Ali et al. [12] and that obtained 
in the present work are compared in Table 1. Also 
this table shows the comparison of the fully developed 

Table 1. Comparison of thef Re and U,,, for semi-circular 
duct at fully developed condition 

Hu 
[51 

Lei and Trupp 
VI 

Ben-Ah et al. 
WI 

Present work 

(p Re)fd u max 

15.767 2.0613 

15.767 

15.790 

15.860 2.0584 

maximum axial velocity with the analytical solution 
of Lei and Trupp [8]. The present computation results 
agree well with other available data. 

The present results for Nusselt numbers of New- 
tonian fully developed flow and heat transfer are tabu- 
lated in Table 2. From this table values of the Nusselt 
numbers are seen to be very close to those numerically 
obtained by Ben-Ali et al. [12], Trupp and Lau [ 111, 
and analytically by Hu [5] and, Trupp and Lei [lo]. 

(a) Effect of power law index 
The dimensionless center plane axial velocity pro- 

files at different axial locations, maximum axial vel- 
ocity and apparent friction factor are presented in Fig. 
3(a)-(d) for different values of n, while the data for 
apparent and also fully developed friction factors are 
tabulated at Table 3. Also velocity vectors for cross- 
stream flow for different power law indices are pre- 
sented in Fig. 4. Close to the walls, the velocity and 
velocity gradient of the pseudoplastic fluid is higher 
than that of a dilatant fluid at the same Reynolds 

Table 2. Comparison of the Nusselt numbers (T and H2 
boundary condition) for semi-circular duct at fully developed 

condition 

Nur &i2 

Hu 
[51 

Trupp and Lau 
VII 

Trupp and Lei 
1101 

Ben-Ah et al. 

1121 
Present work 

2.923 

3.316 

2.920 

3.316 2.930 

3.318 2.920 
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Fig. 3. The effect of power law index on dimensionless center-plane axial velocity profile, maximum velocity 
and friction factor. 

Table 3. A,, * Re at different axial locations for different power law indices, different temperature-viscosity constants, and 
also various boundary conditions 

.fL, * Re 
n = 0.5 n = 0.5 n = 0.5 n = 0.5 
B = 0.5 B= 1.5 B = -0.5 B= -1.5 

x+ n = 0.5 ri= 1.0 n = 1.25 T B.C. T B.C. H2 B.C. H2 B.C. 

0,002 24.860 86.872 147.089 26.172 30.833 24.706 24.402 
0.0229 11.992 29.526 44.734 12.902 15.836 11.761 11.320 
0.1056 7.998 19.349 29.889 8.914 11.426 7.665 7.068 

(P R&i 6.223 15.860 25.365 - 
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(b) 

(d) 

/_ 
0.2OOE-01 

W 
Fig. 4. Secondary flow vectors for different power law indices 
and different temperature-viscosity coefficients at 
x+ = 0.002 for Re = 500 and Pr = 10. (a) n = 0.5; (b) 
n=1.0;(c)n=1.2~~;(d)n=0.5andB=1.5(TB.C.);(e) 

n = 1.0 and B = 1.5 (TB.C.). 

number (Fig. 3). The reason is the lower apparent 
viscosity for a pseudoplastic fluid than that for a 
shear-thickening fluid (for the same value of shear 
rate and consistency index). Requirement of mass 
conservation forces the fluids to correspondingly slow 
down in the core of the duct. Further downstream, 
due to the propagation of the viscous effect to the 
center plane of the channel, the influence of the power 
law index diminishes. As seen from Fig. 3(c), the 
maximum velocity for different power law indices 
increases with increase of axial distance which shows 
flow development. Also the maximum velocity 
decreases with decreasing the power law index. 

From Fig. 4, the secondary flow close to the walls 
is very weak for all fluids. Also for the fluids with 
smaller power law index, the secondary flows far from 
the walls are relatively weak which is due to the flatter 
axial velocity profile for these fluids within the core. 

The maximum velocity does not occur at the cen- 
teroid and the location is the same as documented by 
Lei and Trupp [8] (Z = 0.39297). 

Results (Table 3) indicate the important role of 
entrance region on the apparent friction factor. For 
example at X+ = 0.002, f. Re is 300, 448 and 480% 
higher than its fully developed value for n = 0.5, 1.0 
and 1.25, respectively. This is due to the higher vel- 
ocity gradient near the wall in the entrance region, 
which results in a higher pressure drop. The reason 
for the larger difference for higher n is related to the 
higher apparent viscosity for these power law fluids. 
The higher velocity gradient close to the wall in the 
developing region causes more heat transfer in this 
section of the channel. For example for n = 0.5 at 
x* = 0.0002, the Nusselt number shows 675 and 
1044% enhancement related to the fully developed 
values for T and H2 boundary conditions, respec- 
tively. These emphasize the importance of sim- 
ultaneously developing flow and heat transfer. 

Figure 5(a)-(b) presents the dimensionless cir- 
cumferential wall temperature profile for H2 and the 
dimensionless circumferential heat flux for T bound- 
ary condition and for different power law indices. 

For H2 boundary condition close to the corners, 
due to the heating effect from two walls and also the 
small velocity in this region, the fluid temperature is 
higher than that close to the middle of the walls (Fig. 
5b). Thus the maximum wall temperature occurs at 
the corners and the minimum temperature in the mid- 
dle of the bottom plate. Also, because of the constant 
heat flux around the periphery and the higher wall 
temperature at the corners, the peripheral average wall 
temperature increases, which causes a reduction of 
Nu,, relative to its counterpart in geometries without 
sharp corners (parallel plates and circular duct). For 
the H2 boundary condition, the heat flux is the same 
for different power law indices, therefore difference in 
velocity profiles for different ns cannot affect the fluid 
temperature. Due to the higher velocity gradient (Fig. 
3) for lower power law index, the circumferential wall 
temperature (Fig. 5(b)) increases with n, which shows 
higher heat transfer for lower n values. Far from the 
inlet the velocity gradient close to the wall decreases, 
resulting in higher circumferential wall temperature, 
and therefore heat transfer diminishes with axial dis- 
tance. 

For the T boundary condition, due to the higher 
fluid temperature close to the corners (lower dimen- 
sionless temperature), the heat flux close to the corners 
is smaller (Fig. 5(a)). So the minimum heat flux occurs 
at the corners and the maximum wall heat flux in the 
middle of the bottom plate. Lower heat flux from 
corners causes a lower Nusselt number relative to 
ducts without sharp corners. The higher velocity 
gradient and also higher secondary flow close to the 
walls for lower n results in higher heat flux for pseudo- 
plastic fluids (Fig. 5(a)). 

Generally for T boundary condition the tem- 
perature of the fluid close to the walls approaches the 
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Fig. 5. The effect of power law index on heat transfer characteristics. (a) dimensionless circumferential wall 
heat flux for T boundary condition. (b) dimensionless circumferential wall temperature for H2 boundary 
condition. (c) Nusselt number and dimensionless bulk temperature for T boundary condition. (d) Nusselt 

number and dimensionless bulk temperature for H2 boundary condition. 

wall temperature, so the temperature gradient of the 
fluid at the wall is smaller for the T boundary con- 
dition than that for the constant heat flux boundary 
condition ; this results in a lower Nusselt number for 
the former. This difference in Nusselt numbers for 
a duct with sharp corner is smaller and sometimes 
(depending on the geometry) the Nusselt number for 
H2 is less than that for T boundary conditions. 

The peripherally averaged local and also fully 
developed Nusselt numbers for different power law 
indices and for various boundary conditions are pre- 
sented in Fig. 5(c)-(d) and Tables 4 and 5. The steeper 
velocity gradient and higher secondary flows in the 

wall region for lower n values (Figs. 3 and 4) cause 
enhancement of the Nusselt number but this mag- 
nitude of the enhancement decreases further down- 
stream. For example at x* = 0.0002 the Nusselt num- 
ber for n = 0.5 is 22.1 and 28.6% higher than that for 
Newtonian fluids for T and H2 boundary conditions, 
respectively. These values decrease to 4.9 and 4.0% at 
fully developed condition. 

(b) Effect of variable apparent viscosity 
The apparent viscosity of most liquids decreases 

with increase in temperature. Thus for the case of 
heating the temperature-viscosity coefficient (B) is 
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Table 4. Nusselt numbers at different axial locations for different power law indices, different temperature-viscosity constants 
and various Brinkman numbers for T boundary condition 

.Y* 

NUTJ 
?1 = 0.5 il= 1.0 n = 1.25 n = 0.5 n = 0.5 n = 0.5 n = 0.5 n = 0.5 
I’r = 10 Pr= 10 Pr= 10 B = 0.5 B= 1.5 Br = -0.5 Br = -2.0 Pr = 1.0 

0.00020 26.952 21.957 19.533 28.309 31.756 25.964 21.032 38.486 
0.00229 7.872 7.172 7.039 8.445 9.902 6.797 3.443 10.610 
0.01056 4.805 4.567 4.535 5.135 5.695 3.358 - 1.901 5.481 
(N&d. 3.480 3.318 3.265 3.480 

Table 5. Nusselt numbers at different axial locations for different power law indices, different temperature-viscosity constants 
and various Brinkman numbers for H2 boundary condition 

X* 

N&I,,, 
II = 0.5 II= 1.0 n = 1.25 n = 0.5 n = 0.5 n =0.5 n = 0.5 n = 0.5 
Pr = 10 Pr= 10 Pr=lO B= -0.5 B= -1.5 Br = 0.5 Br = 2.0 Pr = 1.0 

0.00020 34.739 27.022 24.947 34.840 35.062 12.590 4.313 47.895 
0.00229 10.014 8.793 8.535 10.169 10.463 5.171 2.115 14.814 
0.01056 5.269 4.989 4.951 5.419 5.706 2.93537 1.259 6.846 
(NMtd. 3.038 2.920 2.880 3.038 

positive for T and negative for H2 boundary 
conditions. 

The effect of variable viscosity on the dimensionless 
center plane axial velocity profile as well as dimen- 
sionless maximum velocity and apparent friction fac- 
tor can be found from Fig. 6(a)-(d). The effect of 
variable viscosity on secondary flows for T boundary 
condition can be found from Fig. 4. 

In the heating case for both T and H2 boundary 
conditions, due to the high temperature in the wall 
region, the apparent viscosity of the fluid in this region 
decreases, which causes higher velocity and also 
higher velocity gradient near the wall and hence lower 
maximum velocitiles (Fig. 6). This leads to enhanced 
heat transfer. Als~o the higher secondary flow close 
to the walls is the result of temperature dependent 
viscosity (for T boundary condition). 

Figure 7(a)-(d) and Tables 4 and 5 present the 
effect of temperature dependent viscosity on Nusselt 
number for different boundary conditions. 

The effect of variable viscosity is not the same for 
different boundary conditions. For T boundary con- 
ditions (T, - Tb,J is very large at the entrance, which 
introduces a large effect of variable viscosity in this 
region. Further downstream this difference decreases 
gradually thus retarding the effect of variable 
viscosity. At x* = 0.0002 for n = 0.5 considering vari- 
able viscosity (B ??= 1.5), shows a 17.8% increase in 
Nusselt number, while it decreases to 18.5% at 
x* = 0.01056. This enhancement illustrates the 
importance of variable viscosity effects for this bound- 
ary condition. 

The effect of temperature-dependent apparent vis- 
cosity on heat transfer is not as noticeable for the 
constant heat flux boundary conditions as it is for the 
constant wall temperature situations. For H2 bound- 
ary conditions, (T,,, - Tb,J is small in the entrance 

region and increases gradually in the axial direction. 
Therefore the effect of variable viscosity on velocity 
profile is small in the entrance region but increases 
further downstream. Far from the inlet, increase of 
velocity close to the walls causes a decrease in the 
maximum velocity (Fig. 6b). The enhancement of heat 
transfer is very small in the entrance region relative to 
that for T type boundary conditions. For example 
Nusselt number for n = 0.5 increases by 0.9 and 8.3% 
for B = - 1.5 (H2 boundary condition), but by 17.8 
and 18.5% for B = 1.5 (T boundary condition) at 
x* = 0.0002 and x* = 0.01056, respectively. As 
shown in Fig. 7 and Tables 4 and 5, the Nusselt num- 
ber increases as B increases for T boundary 
conditions, but decreases as B decreases for H2 
boundary conditions. 

Table 3 shows the effect of variable viscosity on 
the apparent friction factor for different boundary 
conditions. In the case of the T boundary condition 
the reference temperature for viscosity is the tem- 
perature at the walls. When the variable viscosity 
(heating case) is considered, the average viscosity in 
the momentum boundary layer is higher than that for 
the case of constant viscosity, which causes a higher 
pressure drop and consequently higher friction factor. 
For H2 boundary condition the inlet temperature is 
chosen as a reference temperature, therefore con- 
sidering variable viscosity results in lower pressure 
drop. For example, at x + = 0.1056, the friction factor 
for n = 0.5 and T boundary condition is increased by 
42.9% for B = 1.5 but for H2 boundary condition it 
decreases by 4.2% for B = - 1.5. 

(c) Effect of viscous dissipation 
The Brinkman number is chosen as a criterion which 

shows the relative importance of viscous dissipation. 
The effect of viscous dissipation on the dimen- 
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for different boundary conditions. 

sionless temperature profile is displayed in Fig. 8(a)- 
(b), while the bulk temperature and Nusselt number 
variations for different boundary conditions and for 
different Brinkman numbers are presented in Fig. 
S(c)-(d) and Tables 4 and 5. 

In the case of T boundary condition the Brinkman 
number is negative for heating and positive for 
cooling. Since the highest shear rate occurs near the 
wall, the effect of viscous dissipation is most sig- 
nificant in this region. For T boundary condition vis- 
cous heating increases the bulk temperature (decreases 
dimensionless bulk temperature), which results in a 
decrease of the local Nusselt number. Due to the high 

temperature difference between wall and fluid in the 
entrance region, viscous heating has only a slight effect 
on the Nusselt number. Further downstream, for low 
Brinkman numbers, due to the combined effects of 
viscous dissipation and wall heating, the temperature 
of the fluid close to the wall approximates the wall 
temperature, so the temperature gradient at the wall 
is nearly zero ; the local Nusselt number therefore 
approaches zero. At a location farther downstream, 
the temperature gradient at the wall becomes negative 
while the wall temperature is greater than the bulk 
temperature ; this leads to negative values for the local 
Nusselt number. This indicates a reversal in the direc- 
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tion of the heat flux. As the fluid proceeds downstream 
the fluid bulk temperature increases continuously and 
finally becomes the same as the wall temperature. 
Consequently, the Nusselt number becomes infinite. 
Figure 9(a)-(b) shows the local Nusselt number, 
dimensionless bullk temperature and the dimensionless 
heat flux through the wall for a very long duct (800 
times the hydraulic diameter for T boundary con- 
dition and Br = -- 2). As shown in this figure far from 
X = 0, Tb,x > T,. so the dimensionless bulk tem- 
perature is negative. Also, due to the negative heat 
flux in this region the Nusselt number becomes posi- 
tive again and decreases with increasing axial distance. 
At locations very far from the inlet, increases in the 

dimensionless bulk temperature as well as dimen- 
sionless heat flux become very small and Nusselt num- 
ber approaches to an asymptotic value. Figure 8(c) 
indicates that for a specific Brinkman number the 
attainment of the asymptotic Nusselt number requires 
infinitely long duct length. 

For the constant heat flux boundary condition, the 
Brinkman number is positive for heating. Since the 
temperature difference between the wall and the fluid 
is very small in the entrance region, and viscous heat- 
ing is greater in the inlet region, the largest effect of 
the viscous dissipation is felt in this region, which 
results in lowering of the Nusselt number. This effect 
decreases with downstream distance. 
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(d) Effect of Prandtl number 
Figure 10(a)-(b) demonstrates the effect of Prandtl 

number on Nusselt number for different boundary 
conditions. Lower Prandtl number results in lower 
Nu, in the entrance region. However Nu, asymp- 
totically approaches a fixed value far downstream, 
which is independent of Pr. It can be seen that the 
lower Prandtl number causes faster thermal devel- 
opment, which results in a higher fluid bulk tem- 
perature (lower dimensionless bulk temperature for 
the T type boundary conditions) and also lower 
dimensionless wall heat flux for type T boundary con- 
ditions. The competition between these two effects 

causes a lower heat transfer rate. As the fluid proceeds 
downstream this effect diminishes due to thermal 
development. For type H2 boundary conditions, 
lower Pr causes an increase in (T,,,-- T,,,) which, in 
turn, results in a lower local Nusselt number. Aecord- 
ing to the definition of x*, the lower Prandtl number 
case results in a higher Nusselt number over the entire 
length. 

CONCLUSIONS 

A numerical study based on the Galerkin finite 
element method was carried out on the steady laminar 
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heat transfer in simultaneously developing flow of 
power law fluids Ithrough a semi-circular cross section 
duct. The comparison of the present results with avail- 
able data for a N’ewtonian fluid in the fully developed 
case was excellent. 

The effects of the power law index, temperature- 
dependent viscosity, viscous dissipation, and Prandtl 
number for both T and H2 boundary conditions were 
considered. The results show the importance of the 

0.8 

0.6 

(a) 

non Newtonian behavior on the heat transfer and 
fluid flow characteristics. Temperature dependent vis- 
cosity is shown to have a significant effect on the 
local Nusselt number and also the pressure drop. For 
heating, the increase in the local Nusselt number for 
constant temperature boundary conditions is notice- 
ably higher than that for the constant heat flux bound- 
ary conditions when the temperature dependence of 
fluid viscosity is included in the model. 

0) 
Fig. 10. The effect of Prandtl number on local Nusselt number for different boundary conditions. 
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As shown in previous studies with parallel plates 
and rectangular ducts [20,21], viscous heating has a 
very pronounced effect on heat transfer which can 
even change the direction of heat flux for the case of 
uniform temperature boundary conditions. 

The results indicate that the lower the Prandtl num- 
ber the lower the heat transfer in the developing region 
of the channel, but this is reversed based on using x*. 
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